

Capacity Building Workshop on "Shared Groundwater Resources Management"

2 - 4 December 2008 / Postojna, Slovenia

MANAGEMENT OF GROUNDWATER **BIODIVERSITY**

threatened by pollution, water use and climate change

prof. dr. Anton BRANCELJ

National Institute of Biology, Ljubljana

TOPICS

- Definition of subterranean aquifers
- Structure and ecological differences between aquifers
- Fauna and biodiversity in general
- Specific habitats
- Subterranean fauna in Slovenia & Balkan peninsula
- International activities/projects on GW biodiversity
- Case study of cave Škocjanske jame
- Case study of cave Križna jama

GROUNDWATER AQUIFERS - classification

- Karstic aquifers (= caves in limestone) - < 8000 SLO

- Porous aqifers (= gravel beds & alluvial plains)

CONNECTIONS BETWEEN KARST & POROUS AQUIFERS

COMMON CHARACTERISTICS

- complete darkness
- dependant on food from surface ecosystems
- connected with surface (precipitation, rivers)
- low oscillations in physical and chemical parameters
- vulnerable (i.e. low self-purification capacity)
- small to large storage capacity
- source for drinking water, irrigation, industry
- living place of true groundwater animals (stygobionts)

DIFFERENCES BETWEEN AQUIFERS

- connectivity within systems (low in karst; high in porous)
- distribution (karstic aquifers only on limestone; fissured elsewhere)
- Size of space (high in karst; small in porous)
- speed of water movement (m & km in karst; mm in porous)
- different fauna (better studied in karst than in porous aquifers)
- size of animals (mm dm in karstic; > mm in porous)

CROSS-SECTION OF KARSTIC AQUIFER

FAUNA IN KARSTIC AQUIFERS

NATIONAL INSTITUTE OF BIOLOGY

CROSS-SECTION OF POROUS AQUIFER

FAUNA IN POROUS AQUIFERS

AUTHORS OF FIGURE: DANIELOPOL & POSPISIL

THREATS ON GROUNDWATER AQUIFERS

BIODIVERSITY in Water Framework Directive

- SURFACE WATER BODIES "good ecological status"
 - morphology / typology / size of water body
 - ecosystem's approach based on composition of fauna and flora
 - reference conditions determined
- GROUNDWATER BODIES "chemical status"
 - only water quality (chemical) and quantity
 - subterranean fauna not included
 - reference conditions not determined (!?)
 - complete inconsideration of specificity of karstic aquifers

DEFINITION of BIODIVERSITY

- A) number of species in a given space
- B) depends on number of specimens and species

EXAMPLE: 100 specimens and 10 species

 $H^* = -\sum (ni / N) \log (ni / N) - Shannon-Wienner diversity index$

AA BB CC DD EE FF GG HH KK LL

10 10 10 10 10 10 10 10 10 10 = 1.000 (the most UNIFORM)

 $1 \quad 1 \quad 91 = 0.217$ (the most EXTREME)

GROUNDWATER BIODIVERSITY: GLOBAL SCALE

- Biodiversity in Slovenia: 170 - 200 taxa (approx.)

- Biodiversity in Europe: 1500 - 1600 taxa (approx.)

- Biodiversity in World: 2500 - 3000 taxa (approx.)

GROUNDWATER BIODIVERSITY: REGIONAL SCALE

DINARIDS & BALKAN (part):

region:	No. of stygo.	Area	No. per 100 km2
Slovenia	170	15 000	1.13
Istra	24	3 600	0.67
Croatia	102	25 500	0.40
Bosnia & Herzegovina	a 99	51 000	0.19
Serbia	15	33 800	0.04
Montenegro & Kosovo	55	24 500	0.22
Macedonia	100	14 000	0.71

PECULARITIES OF GROUNDWATER FAUNA

- -most of stygobionts are endemic = restricted to small area or single location (!)
- highly endangered destruction of habitats (pollution, change of water regime)
- some groups very common (with many species) but some very unique (one or few species only)

COMMON vs. UNIQUE GROUPS

COMMON GROUPS:

- Amphipoda
- Isopoda
- Copepoda
- Gastropoda

Amphipoda: c. 200 taxa

Isopoda: c. 100 taxa

Copepoda: c. 200 taxa

Gastropoda: c. 200 taxa

COMMON vs. UNIQUE GROUPS

UNIQUE GROUPS (known from the Dinaric region only):

- Porifera Eunapius subterraneus
- Hydrozoa Velkovrhia enigmatica
- Bivalvia Congeria kuesteri
- Polychaeta Marifugia cavatica
- Cladocera Alona hercegovinae
- Amphibia Proteus anguinus

NATIONAL INSTITUTE OF BIOLOGY

CHARACTERISTICS OF STYGO-FAUNA

- Small
- Blind
- Pale / white
- Elongated legs and antenules
- Representatives of old fauna

- Slow reproduction
- Few off-springs per clutch
- Endemic
- Not able to compete with epigean fauna

prof. dr. Anton Brancelj, National Institute of Biology

RELATIVE KNOWLEDGE ON GROUNDWATER BIODIVERSITY (data from 1990)

HOT-SPOTS ON GROUNDWATER BIODIVERSITY

(data from 1990)

UNEXPECTED DISCOVERY – blind Alonas

Between 1989 and 1998 three unique and endemic species of blind Cladocera were found in Herzegovina and Slovenia

- Alona herzegovinae, Brancelj, 1990 (cave Ljelješnica: H)
- Alona sketi, Brancelj, 1992 (cave Osapska jama: SLO)
- Alona stochi, Brancelj, 1998 (cave Kompoljska jama: SLO)

UNEXPECTED DISCOVERY – blind Alonas

- common opinion on non-existing stygobitic Cladocera
- in fact they are probably relicts from Tertiary
- each species known from one locality only!
- highly vulnerable to pollution = extinction

EPIKARST – specific habitat in the karst

- the first record of epikarst species in 1930 (Kiefer Škocjanske jame)
- occasionally studied since late 1960' (Rouch, 1968)
- intensively studied after 1999 (several authors; from Slovenia described < 5 species – Copepoda)
- epikarst fauna found also in USA, Brazil, Thailand, ...
- So far: 10 new species from SLO; c. 8 recognised from USA; c. 5 from Brazil; 2 new species from Thailand...

EPIKARST - specific habitat in the karst

- epikarst = few metres thin layer of karst just below the surface
- intensively fractured zone with high capacity of rainwater storage and slow release of it
- very sensitive to pollution and heavily dependant on precipitation (- effect of climate change!)
- rich in specific fauna (stygobionts: Rotatoria, Gastropoda, Copepoda,) but not adequately studied

WHERE TO FIND epikarst fauna?

prof. dr. Anton Brancelj, National Institute of Biology

RESEARCH ON EPIKARST FAUNA

- experimental cave : physical and faunistical parameters

(+ 3 new species of Copepoda)

VALUES OF GROUNDWATER BIODIVERSITY

- natural heritage (of whole mankind)
- national identification (used on stamps, money,)
- scientific subject: biology & ecology; paleo-climate; hydrology & geology
- educational importance
- aesthetics values
- turistic atraction (Proteus anguinus "human fish" or cave salamander)
- indicator of water quality and quantity

Considering above mentioned facts:

GROUNDWATER BIODIVERSITY HAS AN ECONOMICAL VALUE!

PROMOTION OF GROUNDWATER FAUNA

in **SLOVENIA**

INTERNATIONAL ACTIVITIES

In Europe several national organisations, countries or international associations try to increase activities on research and protection of groundwater fauna

- incl. within WFD

An example:

Biodiversity of surface waters, floodplains and groundwater; Bonn, 29.-30. Oct. 2008

Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit

EPBRS: Research priorities (Brdo, Jan. 2008)

- Survey and inventory biodiversity-rich but poorly known ecosystems including karstic lakes, ..., hyporheic zones;
- Understand community dynamics and biogeographic distribution patterns;
- Develop and maintain long-term, regular monitoring in freshwater ecosystems;
- Develop new specific bio-indication tools and base future tools on processbased rather than statistical models;
- Develop methods for defining and gathering reference or baseline conditions;
- Assess the value of biodiversity in small, more-or-less isolated water bodies such as ponds, small lakes, ditches;

PASCALIS project – 4th EU WP

PASCALIS = Protocols for the ASsessment and Conservation of Aquatic Life In the Subsurface (2001 – 2004)

Countries: Belgium, France, Slovenia, Spain

Aims: - to collect information on already known groundwater biodiversity (in participating countries only)

- to estimate potential groundwater biodiversity based on statistical analyses
- to develope a standard methods for collection / study of groundwater biodiversity
- to establish protocols for assessment and protection of groundwater hot spots in biodiversity

WHY PASCALIS PROJECT?

 existing knowledge on groundwater biodiversity was very "patchy" and non-consistent

- however, it indicates high potential of biodiversity
- WFD didn't include groundwater biodiversity as indicator of ecological status

HIGH GROUNDWATER BIODIVERSITY

SPECIES RICHNESS ACCUMULATION CURVE FOR FIVE REGIONS

IMPORTANT!!

Known number of stygobionts are not only a result of paleoclimate, geology and ecology but also a result of intensity of research activity in a certain region....

.... IT IS CORELATED with a number of specialists (i.e. taxonomists!) for groundwater biodiversity

AT THE MOMENT THERE IS A DEFICIT OF QUALIFIED SCIENTISTS / TAXONOMISTS/
STUDYING GROUNDWATER FAUNA ALL OVER THE WORLD!!!

VISION:

COMMON AND WELL-RECOGNISED ACTIVITY TO PROTECT GROUNDWATER FAUNA

BASED ON PRINCIPLES OF SUSTAINABLE DEVELOPMENT

WITH NO THREAT OF POLLUTION OR OVER-EXPLOATATION OF GROUNDWATER

(role of climate change?)

ŠKOCJANSKE JAME – story of success

The cave system ŠKOCJANSKE JAME:

river with two names and two faces

REKA (Slovenia)

- TIMAVO (Italy)

Some facts: - catchment area (epigean part only): 323 square km

- length of the surface river network: 617 km

- spring to source - as crow fly: 110 km

prof. dr. Anton Brancelj, National Institute of Biology

HYDROLOGICAL CONNECTIONS

HISTORY OF PARK ŠKOCJANSKE JAME

- UNESCO world (natural) heritage since 1986
- Ramsar site: Underground Karst Wetland since 1999
- **Natura 2000** since 2000
- M&B (UNESCO): The Karst Biosphere Reserve since 2004

Škocjan Caves Park Public Service Agency: established on 27.01.1997

LOCAL POPULATION IS ACTIVELY INVOLVED IN A POLICY OF THE PARK!

BIODIVERSITY IN ŠKOCJANSKE JAME

FAUNA IN THE RIVER REKA:

Epigean part:

fauna typical for inland water (dominance of insects' larvae)

Subterranean part:

heavilly polluted in the past (between 1960 -1988) improving in the last decade (actually since 1991) stygobiont fauna not very rich

DIRECTION OF A RIVER FLOW

STYGOBIONTS

EPIGEAN FAUNA

STYGOFAUNA OF THE RIVER

SOME REPRESENTATIVES OF STYGOBIONTS FROM THE TIMAVO RIVER:

Niphargus timavi – endemic =

Marifugia cavatica

Sphaeromides virei

Asellus aquaticus cavernicolus

Troglocaris sp.

POLLUTION PROBLEMS

SURFACE PART OF THE RIVER:

- heavily polluted with industry (TOK) till end of 1980'
- pollution stopped after 1991

SUBTERRANEAN PART:

- heavilly polluted in the past
- fauna in the main channel completely extinct
- some springs in Italy used as souce of drinking water (!)
- after 1991 significant improvement of water quality

STYGOFAUNA OF THE EPIKARST

EPIKARST IN THE ŠKOCJANSKE JAME

- very rich in fauna of Copepoda (15 taxa)
- a lot of endemics
- not directly connected with the river

The first epikarstic species of Copepoda described from the cave Škocjanske jame:

Morariopsis scotenophila (Kiefer, 1930) Speocyclops infernus (Kiefer, 1930)

Morariopsis scotenophila

KRIŽNA JAMA - endangerment of groundwater biodiversity

prof. dr. Anton Brancelj, National Institute of Biology

CAVE WITH 22 LAKES AND RICH FAUNA

Cave Križna jama:

the third Slovenian cave inscribed as a member of International Show Caves Association

- known since 1832; the most important discovery in 1926
- actual length: 8273 m
- 22 lakes with crystal-clear water
- rich in cave fauna (terestrial and aquatic, cca. 45 taxa)
- important location on remains of cave bears

POLLUTION CAUSED BY NEW WWTP

prof. dr. Anton Brancelj, National Institute of Biology

NGO SENT A COMPLAINT TO EC TO PROTECT GW BIODIVERSITY

- Sep. 2007 information of DPKJ on preliminary start of WWTP
- Oct. 2007 DPKJ sent protest to ARSO & Minister, media
 - reference conditions for water quality analyses (NIB)
 - MOP declare DPKJ as NGO with special interest for activities on nature preservation
- Dec. 2007 tracing experiment (IZRK)
- Mar. 2008 WWTP officially started, tracing results
 - DPJK sent protest to president of RS, MOP, ARSO,...
- Apr. 2008 protest sent to UNESCO
- Jun. 2008 MOP set temporary ban on WWTP
- Jul. 2008 request from EC to ministry to send additional information on pollution

NOW, WHAT WILL BE THE NEXT STEPS?

THANK YOU!

